Google

scientific research and developement

Thursday, March 20, 2008

Scientific method refers to the body of techniques for investigating phenomena, acquiring new knowledge, or correcting and integrating previous knowledge. It is based on gathering observable, empirical and measurable evidence subject to specific principles of reasoning. A scientific method consists of the collection of data through observation and experimentation, and the formulation and testing of hypotheses.
Although procedures vary from one field of inquiry to another, identifiable features distinguish scientific inquiry from other methodologies of knowledge. Scientific researchers propose hypotheses as explanations of phenomena, and design experimental studies to test these hypotheses. These steps must be repeatable in order to predict dependably any future results. Theories that encompass wider domains of inquiry may bind many hypotheses together in a coherent structure. This in turn may help form new hypotheses or place groups of hypotheses into context.
Among other facets shared by the various fields of inquiry is the conviction that the process must be objective to reduce a biased interpretation of the results. Another basic expectation is to document, archive and share all data and methodology so it is available for careful scrutiny by other scientists, thereby allowing other researchers the opportunity to verify results by attempting to reproduce them. This practice, called full disclosure, also allows statistical measures of the reliability of these data to be established.
Elements of scientific method
There are many ways of outlining the basic method shared by all fields of scientific inquiry. The following examples are typical classifications of the most important components of the method on which there is wide agreement in the scientific community and among philosophers of science. There are, however, disagreements about some aspects.
The following set of methodological elements and organization of procedures tends to be more characteristic of natural sciences than social sciences. In the social sciences mathematical and statistical methods of verification and hypotheses testing may be less stringent. Nonetheless the cycle of hypothesis, verification and formulation of new hypotheses will resemble the cycle described below.
Each element of a scientific method is subject to peer review for possible mistakes. These activities do not describe all that scientists do (see below) but apply mostly to experimental sciences (e.g., physics, chemistry). The elements above are often taught in the educational system.
Scientific method is not a recipe: it requires intelligence, imagination, and creativity. It is also an ongoing cycle, constantly developing more useful, accurate and comprehensive models and methods. For example, when Einstein developed the Special and General Theories of Relativity, he did not in any way refute or discount Newton's Principia. On the contrary, if the astronomically large, the vanishingly small, and the extremely fast are reduced out from Einstein's theories — all phenomena that Newton could not have observed — Newton's equations remain. Einstein's theories are expansions and refinements of Newton's theories, and observations that increase our confidence in them also increase our confidence in Newton's approximations to them.
A linearized, pragmatic scheme of the four points above is sometimes offered as a guideline for proceeding.
Characterizations
Scientific method depends upon increasingly more sophisticated characterizations of subjects of the investigation. (The subjects can also be called unsolved problems or the unknowns). For example, Benjamin Franklin correctly characterized St. Elmo's fire as electrical in nature, but it has taken a long series of experiments and theory to establish this. While seeking the pertinent properties of the subjects, this careful thought may also entail some definitions and observations; the observations often demand careful measurements and/or counting.
"I am not accustomed to saying anything with certainty after only one or two observations." The systematic, careful collection of measurements or counts of relevant quantities is often the critical difference between pseudo-sciences, such as alchemy, and a science, such as chemistry or biology. Scientific measurements taken are usually tabulated, graphed, or mapped, and statistical manipulations, such as correlation and regression, performed on them. The measurements might be made in a controlled setting, such as a laboratory, or made on more or less inaccessible or unmanipulatable objects such as stars or human populations. The measurements often require specialized scientific instruments such as thermometers, spectroscopes, or voltmeters, and the progress of a scientific field is usually intimately tied to their invention and development.
Uncertainty
Measurements in scientific work are also usually accompanied by estimates of their uncertainty. The uncertainty is often estimated by making repeated measurements of the desired quantity. Uncertainties may also be calculated by consideration of the uncertainties of the individual underlying quantities that are used. Counts of things, such as the number of people in a nation at a particular time, may also have an uncertainty due to limitations of the method used. Counts may only represent a sample of desired quantities, with an uncertainty that depends upon the sampling method used and the number of samples taken.
Definition
Measurements demand the use of operational definitions of relevant quantities. That is, a scientific quantity is described or defined by how it is measured, as opposed to some more vague, inexact or "idealized" definition. For example, electrical current, measured in amperes, may be operationally defined in terms of the mass of silver deposited in a certain time on an electrode in an electrochemical device that is described in some detail. The operational definition of a thing often relies on comparisons with standards: the operational definition of "mass" ultimately relies on the use of an artifact, such as a certain kilogram of platinum-iridium kept in a laboratory in France.
The scientific definition of a term sometimes differs substantially from its natural language usage. For example, mass and weight overlap in meaning in common discourse, but have distinct meanings in mechanics. Scientific quantities are often characterized by their units of measure which can later be described in terms of conventional physical units when communicating the work.
New theories sometimes arise upon realizing that certain terms had not previously been sufficiently clearly defined. For example, Albert Einstein's first paper on relativity begins by defining simultaneity and the means for determining length. These ideas were skipped over by Isaac Newton with, "I do not define time, space, place and motion, as being well known to all." Einstein's paper then demonstrates that they (viz., absolute time and length independent of motion) were approximations. Francis Crick cautions us that when characterizing a subject, however, it can be premature to define something when it remains ill-understood.In Crick's study of consciousness, he actually found it easier to study awareness in the visual system, rather than to study free will, for example. His cautionary example was the gene; the gene was much more poorly understood before Watson and Crick's pioneering discovery of the structure of DNA; it would have been counterproductive to spend much time on the definition of the gene, before them.
DNA-characterizations
The history of the discovery of the structure of DNA is a classic example of the elements of scientific method: in 1950 it was known that genetic inheritance had a mathematical description, starting with the studies of Gregor Mendel. But the mechanism of the gene was unclear. Researchers in Bragg's laboratory at Cambridge University made X-ray diffraction pictures of various molecules, starting with crystals of salt, and proceeding to more complicated substances. Using clues which were painstakingly assembled over the course of decades, beginning with its chemical composition, it was determined that it should be possible to characterize the physical structure of DNA, and the X-ray images would be the vehicle. ..2. DNA-hypotheses
Hypothesis development
A hypothesis is a suggested explanation of a phenomenon, or alternately a reasoned proposal suggesting a possible correlation between or among a set of phenomena.
Normally hypotheses have the form of a mathematical model. Sometimes, but not always, they can also be formulated as existential statements, stating that some particular instance of the phenomenon being studied has some characteristic and causal explanations, which have the general form of universal statements, stating that every instance of the phenomenon has a particular characteristic.
Scientists are free to use whatever resources they have — their own creativity, ideas from other fields, induction, Bayesian inference, and so on — to imagine possible explanations for a phenomenon under study. Charles Sanders Peirce, borrowing a page from Aristotle (Prior Analytics, 2.25) described the incipient stages of inquiry, instigated by the "irritation of doubt" to venture a plausible guess, as abductive reasoning. The history of science is filled with stories of scientists claiming a "flash of inspiration", or a hunch, which then motivated them to look for evidence to support or refute their idea. Michael Polanyi made such creativity the centerpiece of his discussion of methodology.
William Glen observes that
the success of a hypothesis, or its service to science, lies not simply in its perceived "truth", or power to displace, subsume or reduce a predecessor idea, but perhaps more in its ability to stimulate the research that will illuminate … bald suppositions and areas of vagueness. In general scientists tend to look for theories that are "elegant" or "beautiful". In contrast to the usual English use of these terms, they here refer to a theory in accordance with the known facts, which is nevertheless relatively simple and easy to handle. Occam's Razor serves as a rule of thumb for making these determinations.
DNA-hypotheses
Linus Pauling proposed that DNA was a triple helix. Francis Crick and James Watson learned of Pauling's hypothesis, understood from existing data that Pauling was wrong and realized that Pauling would soon realize his mistake. So the race was on to figure out the correct structure. Except that Pauling did not realize at the time that he was in a race! ..3. DNA-predictions
Predictions from the hypothesis
Any useful hypothesis will enable predictions, by reasoning including deductive reasoning. It might predict the outcome of an experiment in a laboratory setting or the observation of a phenomenon in nature. The prediction can also be statistical and only talk about probabilities.
It is essential that the outcome be currently unknown. Only in this case does the eventuation increase the probability that the hypothesis be true. If the outcome is already known, it's called a consequence and should have already been considered while formulating the hypothesis.
If the predictions are not accessible by observation or experience, the hypothesis is not yet useful for the method, and must wait for others who might come afterward, and perhaps rekindle its line of reasoning. For example, a new technology or theory might make the necessary experiments feasible.
DNA-predictions
When Watson and Crick hypothesized that DNA was a double helix, Francis Crick predicted that an X-ray diffraction image of DNA would show an X-shape. Also in their first paper they predicted that the double helix structure that they discovered would prove important in biology, writing "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material".
Experiments
The control is very important. Once predictions are made, they can be tested by experiments. If test results contradict predictions, then the hypotheses are called into question and explanations may be sought. Sometimes experiments are conducted incorrectly and are at fault. If the results confirm the predictions, then the hypotheses are considered likely to be correct but might still be wrong and are subject to further testing.
Depending on the predictions, the experiments can have different shapes. It could be a classical experiment in a laboratory setting, a double-blind study or an archaeological excavation. Even taking a plane from New York to Paris is an experiment which tests the aerodynamical hypotheses used for constructing the plane.
Scientists assume an attitude of openness and accountability on the part of those conducting an experiment. Detailed record keeping is essential, to aid in recording and reporting on the experimental results, and providing evidence of the effectiveness and integrity of the procedure. They will also assist in reproducing the experimental results. Traces of this tradition can be seen in the work of Hipparchus (190-120 BCE), when determining a value for the precession of the Earth, while controlled experiments can be seen in the works of Muslim scientists such as Geber (721-815 CE), al-Battani (853–929) and Alhacen (965-1039).
DNA-experiments
Before proposing their model Watson and Crick had previously seen x-ray diffraction images by Rosalind Franklin, Maurice Wilkins, and Raymond Gosling. However, they later reported that Franklin initially rebuffed their suggestion that DNA might be a double helix. Franklin had immediately spotted flaws in the initial hypotheses about the structure of DNA by Watson and Crick. The X-shape in X-ray images helped confirm the helical structure of DN. ..1. DNA-characterizations

Saturday, March 15, 2008